現代永磁電機交流伺服系統 伺服電機與同步電機區別

2021-10-11 15:18:12 字數 3810 閱讀 1710

首先概念不同,伺服電機是加有反饋的閉環控制的電機,電機是鼠籠的,也許定子、轉子形狀不同有好幾種型別。但同步電機是沒有反饋的開環電機。同步電機的轉子是永磁的。普通三相交流電機轉子是鼠籠的沒有磁性。這就是區別。 兩者不是乙個概念。伺服電機可以是普通電機+編碼器+伺服驅動器。靠伺服驅動器控制消除電機的滑差。所以無論有沒有負載都很準確的達到所要的轉速或位置。同步電機在空載下可能同步,但負載超過一定量的時候就不能同步了。 伺服電機一般為永磁式同步電動機,驅動數控工具機上的x/y/z軸檯面,電機電機後帶絕對編碼器或增量編碼器作為位置反饋。一般不使用鼠籠非同步電動機。

數控工具機上的主軸電機也帶編碼器,但解析度沒有伺服電機編碼器的解析度高,同時由於隨動效能要求不高,一般使用鼠籠非同步電動機,這樣成本可以低一些。 步進電機和交流伺服電機效能比較 步進電機是一種離散運動的裝置,它和現代數字控制技術有著本質的聯絡。在目前國內的數字控制系統中,步進電機的應用十分廣泛。

隨著全數字式交流伺服系統的出現,交流伺服電機也越來越多地應用於數字控制系統中。為了適應數字控制的發展趨勢,運動控制系統中大多採用步進電機或全數字式交流伺服電機作為執行電動機。雖然兩者在控制方式上相似(脈衝串和方向訊號),但在使用效能和應用場合上存在著較大的差異。現就二者的使用效能作一比較。

一、控制精度不同 兩相混合式步進電機步距角一般為3.6°、 1.8°,五相混合式步進電機步距角一般為0.72 °、0.36°。也有一些高效能的步進電機步距角更小。如四通公司生產的一種用於慢走絲工具機的步進電機,其步距角為0.09°;德國百格拉公司(berger lahr)生產的三相混合式步進電機其步距角可通過撥碼開關設定為1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,相容了兩相和五相混合式步進電機的步距角。 交流伺服電機的控制精度由電機軸後端的旋轉編碼器保證。以松下全數字式交流伺服電機為例,對於帶標準2500線編碼器的電機而言,由於驅動器內部採用了四倍頻技術,其脈衝當量為360°/10000=0.036°。對於帶17位編碼器的電機而言,驅動器每接收217=131072個脈衝電機轉一圈,即其脈衝當量為360°/131072=9.89秒。是步距角為1.8°的步進電機的脈衝當量的1/655。

二、低頻特性不同 步進電機在低速時易出現低頻振動現象。振動頻率與負載情況和驅動器效能有關,一般認為振動頻率為電機空載起跳頻率的一半。這種由步進電機的工作原理所決定的低頻振動現象對於機器的正常運轉非常不利。當步進電機工作在低速時,一般應採用阻尼技術來克服低頻振動現象,比如在電機上加阻尼器,或驅動器上採用細分技術等。 交流伺服電機運轉非常平穩,即使在低速時也不會出現振動現象。交流伺服系統具有共振抑制功能,可涵蓋機械的剛性不足,並且系統內部具有頻率解析機能(fft),可檢測出機械的共振點,便於系統調整。

三、矩頻特性不同 步進電機的輸出力矩隨轉速公升高而下降,且在較高轉速時會急劇下降,所以其最高工作轉速一般在300~600rpm。交流伺服電機為恆力矩輸出,即在其額定轉速(一般為2000rpm或3000rpm)以內,都能輸出額定轉矩,在額定轉速以上為恆功率輸出。

四、過載能力不同 步進電機一般不具有過載能力。交流伺服電機具有較強的過載能力。以松下交流伺服系統為例,它具有速度過載和轉矩過載能力。其最大轉矩為額定轉矩的三倍,可用於克服慣性負載在啟動瞬間的慣性力矩。步進電機因為沒有這種過載能力,在選型時為了克服這種慣性力矩,往往需要選取較大轉矩的電機,而機器在正常工作期間又不需要那麼大的轉矩,便出現了力矩浪費的現象。

五、執行效能不同 步進電機的控制為開環控制,啟動頻率過高或負載過大易出現丟步或堵轉的現象,停止時轉速過高易出現過衝的現象,所以為保證其控制精度,應處理好公升、降速問題。交流伺服驅動系統為閉環控制,驅動器可直接對電機編碼器反饋訊號進行取樣,內部構成位置環和速度環,一般不會出現步進電機的丟步或過衝的現象,控制效能更為可靠。

六、速度響應效能不同 步進電機從靜止加速到工作轉速(一般為每分鐘幾百轉)需要200~400毫秒。交流伺服系統的加速效能較好,以松下msma 400w交流伺服電機為例,從靜止加速到其額定轉速3000rpm僅需幾毫秒,可用於要求快速啟停的控制場合。

綜上所述,交流伺服系統在許多效能方面都優於步進電機。但在一些要求不高的場合也經常用步進電機來做執行電動機。所以,在控制系統的設計過程中要綜合考慮控制要求、成本等多方面的因素,選用適當的控制電機。 步進電機作為執行元件,是機電一體化的關鍵產品之一。步進電機是一種將電脈衝轉化為角位移的執行機構。當步進驅動器接收到乙個脈衝訊號,它就驅動步進電機按設定的方向轉動乙個固定的角度(稱為「步距角」),它的旋轉是以固定的角度一步一步執行的。可以通過控制脈衝個數來控制角位移量,從而達到準確定位的目的;同時可以通過控制脈衝頻率來控制電機轉動的速度和加速度,從而達到調速的目的。步進電機可以作為一種控制用的特種電機,利用其沒有積累誤差(精度為100%)的特點,廣泛應用於各種開環控制。

現在比較常用的步進電機包括反應式步進電機(vr)、永磁式步進電機(pm)、混合式步進電機(hb)和單相式步進電機等。

永磁式步進電機一般為兩相,轉矩和體積較小,步進角一般為7.5度 或15度; 反應式步進電機一般為三相,可實現大轉矩輸出,步進角一般為1.5度,但雜訊和振動都很大。反應式步進電機的轉子磁路由軟磁材料製成,定子上有多相勵磁繞組,利用磁導的變化產生轉矩。 混合式步進電機是指混合了永磁式和反應式的優點。它又分為兩相和五相:兩相步進角一般為1.8度而五相步進角一般為 0.72度。這種步進電機的應用最為廣泛,也是本次細分驅動方案所選用的步進電機。 步進電機的一些基本引數: 電機固有步距角: 它表示控制系統每發乙個步進脈衝訊號,電機所轉動的角度。電機出廠時給出了乙個步距角的值,如86byg250a型電機給出的值為0.9°/1.8°(表示半步工作時為0.9°、整步工作時為1.8°),這個步距角可以稱之為『電機固有步距角』,它不一定是電機實際工作時的真正步距角,真正的步距角和驅動器有關。 步進電機的相數: 是指電機內部的線圈組數,目前常用的有二相、三相、四相、五相步進電機。電機相數不同,其步距角也不同,一般二相電機的步距角為0.9°/1.8°、三相的為0.75°/1.5°、五相的為0.36°/0.72° 。

在沒有細分驅動器時,使用者主要靠選擇不同相數的步進電機來滿足自己步距角的要求。如果使用細分驅動器,則『相數』將變得沒有意義,使用者只需在驅動器上改變細分數,就可以改變步距角。 保持轉矩(holding torque): 是指步進電機通電但沒有轉動時,定子鎖住轉子的力矩。它是步進電機最重要的引數之一,通常步進電機在低速時的力矩接近保持轉矩。由於步進電機的輸出力矩隨速度的增大而不斷衰減,輸出功率也隨速度的增大而變化,所以保持轉矩就成為了衡量步進電機最重要的引數之一。

比如,當人們說2n.m的步進電機,在沒有特殊說明的情況下是指保持轉矩為2n.m的步進電機。 detent torque: 是指步進電機沒有通電的情況下,定子鎖住轉子的力矩。detent torque 在國內沒有統一的翻譯方式,容易使大家產生誤解;由於反應式步進電機的轉子不是永磁材料,所以它沒有detent torque。

步進電機的一些特點:

1.一般步進電機的精度為步進角的3-5%,且不累積。

2.步進電機外表允許的最高溫度。 步進電機溫度過高首先會使電機的磁性材料退磁,從而導致力矩下降乃至於失步,因此電機外表允許的最高溫度應取決於不同電機磁性材料的退磁點;一般來講,磁性材料的退磁點都在攝氏130度以上,有的甚至高達攝氏200度以上,所以步進電機外表溫度在攝氏80-90度完全正常。

3.步進電機的力矩會隨轉速的公升高而下降。 當步進電機轉動時,電機各相繞組的電感將形成乙個反向電動勢;頻率越高,反向電動勢越大。在它的作用下,電機隨頻率(或速度)的增大而相電流減小,從而導致力矩下降。

4.步進電機低速時可以正常運轉,但若高於一定速度就無法啟動,並伴有嘯叫聲。 步進電機有乙個技術引數:空載啟動頻率,即步進電機在空載情況下能夠正常啟動的脈衝頻率,如果脈衝頻率高於該值,電機不能正常啟動,可能發生丟步或堵轉。在有負載的情況下,啟動頻率應更低。如果要使電機達到高速轉動,脈衝頻率應該有加速過程,即啟動頻率較低,然後按一定加速度公升到所希望的高頻(電機轉速從低速公升到高速)。

交流伺服電機

1 交流伺服電動機有以下三種轉速控制方式 1 幅值控制控制電流與勵磁電流的相位差保持90 不變,改變控制電壓的大小。2 相位控制控制電壓與勵磁電壓的大小,保持額定值不變,改變控制電壓的相位 3 幅值 相位控制同時改變控制電壓幅值和相位。交流伺服電動機轉軸的轉向隨控制電壓相位的反相而改變。2 工作特性...

交流伺服電機飛車問題

電機是三菱電機,交流伺服。故障現象,電機利用軟體控制,給定一定轉數,發現電機轉數遠遠大於給定轉數,並伴有巨大震動,現象為偶發。問題描述 某日上午,電機運轉正常,中午突然斷電,下午重啟電機以及軟體平台對電機進行控制,發現電機轉速異常,疑似飛車,速度不可控。之後排除故障原因,將軟體退回到之前版本,控制電...

高效能永磁交流伺服電機系統控制策略

永磁交流伺服電機模型是強耦合,時變的非線性系統。優良的控制策略不但可以彌補硬體設計方面的不足,通過控制策略可以進一步提高系統的效能,不但使系統具有快速的動態響應和高的動 靜態精度,而且系統要對引數的變化和擾動具有不敏感性。控制策略有 1.傳統控制策略 轉速開環恆壓頻比控制 經典pid控制 磁場定向控...