最小二乘法

2021-07-31 23:45:34 字數 1892 閱讀 2580

我們以最簡單的一元線性模型來解釋最小二乘法。什麼是一元線性模型呢? 監督學習中,如果**的變數是離散的,我們稱其為分類(如決策樹,支援向量機等),如果**的變數是連續的,我們稱其為回歸。回歸分析中,如果只包括乙個自變數和乙個因變數,且二者的關係可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關係,則稱為多元線性回歸分析。對於二維空間線性是一條直線;對於三維空間線性是乙個平面,對於多維空間線性是乙個超平面...

對於一元線性回歸模型, 假設從總體中獲取了n組觀察值(x1,y1),(x2,y2), …,(xn,yn)。對於平面中的這n個點,可以使用無數條曲線來擬合。要求樣本回歸函式盡可能好地擬合這組值。綜合起來看,這條直線處於樣本資料的中心位置最合理。 選擇最佳擬合曲線的標準可以確定為:使總的擬合誤差(即總殘差)達到最小。有以下三個標準可以選擇:

(1)用「殘差和最小」確定直線位置是乙個途徑。但很快發現計算「殘差和」存在相互抵消的問題。

(2)用「殘差絕對值和最小」確定直線位置也是乙個途徑。但絕對值的計算比較麻煩。

(3)最小二乘法的原則是以「殘差平方和最小」確定直線位置。用最小二乘法除了計算比較方便外,得到的估計量還具有優良特性。這種方法對異常值非常敏感。

最常用的是普通最小二乘法( ordinary  least square,ols):所選擇的回歸模型應該使所有觀察值的殘差平方和達到最小。(q為殘差平方和)- 即採用平方損失函式。

樣本回歸模型:

平方損失函式:

則通過q最小確定這條直線,即確定

根據數學知識我們知道,函式的極值點為偏導為0的點。

解得:

考慮超定方程組(超定指未知數小於方程個數):

其中m代表有m個等式,n代表有 n 個未知數

m>n ;將其進行向量化後為:

顯然該方程組一般而言沒有解,所以為了選取最合適的

讓該等式"盡量成立",引入殘差平方和函式s:

(在統計學中,殘差平方和函式可以看成n倍的均方誤差mse):

這個方程稱為正規方程組,吳恩達在他的公開課的正式第一節裡面有詳細的推導,其本質就是對損失函式求最優解。有了這個式子我們就可以得出:

在通常情況下如果非奇異代表你提供的特徵中有兩個一模一樣的,但是這通常不會成為乙個問題,不用擔心。(吳恩達原話)。

這樣我們就可以通過代數形式直接得到最優解而不用通過梯度下降反覆去迭代。

推理公式:

最小二乘法

include stdafx.h include include const int n 2 const int m 5 int sgn double x void lss double g n 1 int xm,int xn,double x m double p,double w m lss函式...

最小二乘法

在研究兩個變數之間的關係時,可以用回歸分析的方法進行分析。當確定了描述兩個變數之間的回歸模型後,就可以使用最小二乘法估計模型中的引數,進而建立經驗方程.簡單地說,最小二乘的思想就是要使得觀測點和估計點的距離的平方和達到最小.這裡的 二乘 指的是用平方來度量觀測點與估計點的遠近 在古漢語中 平方 稱為...

最小二乘法

最小二乘法 least squares analysis 是一種 數學 優化 技術,它通過 最小化 誤差 的平方和找到一組資料的最佳 函式 匹配。最小二乘法是用最簡的方法求得一些絕對不可知的真值,而令誤差平方之和為最小。最小二乘法通常用於 曲線擬合 least squares fitting 這裡有...