原碼, 反碼, 補碼 詳解

2021-09-19 13:51:20 字數 4788 閱讀 9376

原碼, 反碼, 補碼 詳解

本篇文章講解了計算機的原碼, 反碼和補碼. 並且進行了深入探求了為何要使用反碼和補碼, 以及更進一步的論證了為何可以用反碼, 補碼的加法計算原碼的減法. 論證部分如有不對的地方請各位牛人幫忙指正! 希望本文對大家學習計算機基礎有所幫助!

一. 機器數和真值

在學習原碼, 反碼和補碼之前, 需要先了解機器數和真值的概念.

1、機器數

乙個數在計算機中的二進位制表示形式, 叫做這個數的機器數。機器數是帶符號的,在計算機用乙個數的最高位存放符號, 正數為0, 負數為1.

比如,十進位制中的數 +3 ,計算機字長為8位,轉換成二進位制就是00000011。如果是 -3 ,就是 10000011 。

那麼,這裡的 00000011 和 10000011 就是機器數。

2、真值

因為第一位是符號位,所以機器數的形式值就不等於真正的數值。例如上面的有符號數 10000011,其最高位1代表負,其真正數值是 -3 而不是形式值131(10000011轉換成十進位制等於131)。所以,為區別起見,將帶符號位的機器數對應的真正數值稱為機器數的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

二. 原碼, 反碼, 補碼的基礎概念和計算方法.

在探求為何機器要使用補碼之前, 讓我們先了解原碼, 反碼和補碼的概念.對於乙個數, 計算機要使用一定的編碼方式進行儲存. 原碼, 反碼, 補碼是機器儲存乙個具體數字的編碼方式.原碼

原碼就是符號位加上真值的絕對值, 即用第一位表示符號, 其餘位表示值. 比如如果是8位二進位制:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

第一位是符號位. 因為第一位是符號位, 所以8位二進位制數的取值範圍就是:

[1111 1111 , 0111 1111]

即[-127 , 127]

原碼是人腦最容易理解和計算的表示方式.反碼

反碼的表示方法是:

正數的反碼是其本身

負數的反碼是在其原碼的基礎上, 符號位不變,其餘各個位取反.

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

可見如果乙個反碼表示的是負數, 人腦無法直觀的看出來它的數值. 通常要將其轉換成原碼再計算.補碼

補碼的表示方法是:

正數的補碼就是其本身

負數的補碼是在其原碼的基礎上, 符號位不變, 其餘各位取反, 最後+1. (即在反碼的基礎上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]補

[-1] = [10000001]原 = [11111110]反 = [11111111]補

對於負數, 補碼表示方式也是人腦無法直**出其數值的. 通常也需要轉換成原碼在計算其數值.

三. 為何要使用原碼, 反碼和補碼

在開始深入學習前, 我的學習建議是先"死記硬背"上面的原碼, 反碼和補碼的表示方式以及計算方法.

現在我們知道了計算機可以有三種編碼方式表示乙個數. 對於正數因為三種編碼方式的結果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]補

所以不需要過多解釋. 但是對於負數:

[-1] = [10000001]原 = [11111110]反 = [11111111]補

可見原碼, 反碼和補碼是完全不同的. 既然原碼才是被人腦直接識別並用於計算表示方式, 為何還會有反碼和補碼呢?

首先, 因為人腦可以知道第一位是符號位, 在計算的時候我們會根據符號位, 選擇對真值區域的加減. (真值的概念在本文最開頭). 但是對於計算機, 加減乘數已經是最基礎的運算, 要設計的盡量簡單. 計算機辨別"符號位"顯然會讓計算機的基礎電路設計變得十分複雜! 於是人們想出了將符號位也參與運算的方法. 我們知道, 根據運算法則減去乙個正數等於加上乙個負數, 即: 1-1 = 1 + (-1) = 0 , 所以機器可以只有加法而沒有減法, 這樣計算機運算的設計就更簡單了.

於是人們開始探索 將符號位參與運算, 並且只保留加法的方法. 首先來看原碼:

計算十進位制的表示式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原碼表示, 讓符號位也參與計算, 顯然對於減法來說, 結果是不正確的.這也就是為何計算機內部不使用原碼表示乙個數.

為了解決原碼做減法的問題, 出現了反碼:

計算十進位制的表示式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

發現用反碼計算減法, 結果的真值部分是正確的. 而唯一的問題其實就出現在"0"這個特殊的數值上. 雖然人們理解上+0和-0是一樣的, 但是0帶符號是沒有任何意義的. 而且會有[0000 0000]原和[1000 0000]原兩個編碼表示0.

於是補碼的出現, 解決了0的符號以及兩個編碼的問題:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]補 + [1111 1111]補 = [0000 0000]補=[0000 0000]原

這樣0用[0000 0000]表示, 而以前出現問題的-0則不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]補 + [1000 0001]補 = [1000 0000]補

-1-127的結果應該是-128, 在用補碼運算的結果中, [1000 0000]補 就是-128. 但是注意因為實際上是使用以前的-0的補碼來表示-128, 所以-128並沒有原碼和反碼表示.(對-128的補碼表示[1000 0000]補算出來的原碼是[0000 0000]原, 這是不正確的)

使用補碼, 不僅僅修復了0的符號以及存在兩個編碼的問題, 而且還能夠多表示乙個最低數. 這就是為什麼8位二進位制, 使用原碼或反碼表示的範圍為[-127, +127], 而使用補碼表示的範圍為[-128, 127].

因為機器使用補碼, 所以對於程式設計中常用到的32位int型別, 可以表示範圍是: [-231, 231-1] 因為第一位表示的是符號位.而使用補碼表示時又可以多儲存乙個最小值.

四 原碼, 反碼, 補碼 再深入

計算機巧妙地把符號位參與運算, 並且將減法變成了加法, 背後蘊含了怎樣的數學原理呢?

將鐘錶想象成是乙個1位的12進製數. 如果當前時間是6點, 我希望將時間設定成4點, 需要怎麼做呢?我們可以:

往回調2個小時: 6 - 2 = 4

往前撥10個小時: (6 + 10) mod 12 = 4

往前撥10+12=22個小時: (6+22) mod 12 =4

2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12後的餘數是4.

所以鐘錶往回調(減法)的結果可以用往前撥(加法)替代!

現在的焦點就落在了如何用乙個正數, 來替代乙個負數. 上面的例子我們能感覺出來一些端倪, 發現一些規律. 但是數學是嚴謹的. 不能靠感覺.

首先介紹乙個數學中相關的概念: 同餘

同餘的概念

兩個整數a,b,若它們除以整數m所得的餘數相等,則稱a,b對於模m同餘

記作 a ≡ b (mod m)

讀作 a 與 b 關於模 m 同餘。

舉例說明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以4, 16, 28關於模 12 同餘.

負數取模

正數進行mod運算是很簡單的. 但是負數呢?

下面是關於mod運算的數學定義:

上面是截圖, "取下界"符號找不到如何輸入(word中貼上過來後亂碼). 下面是使用"l"和"j"替換上圖的"取下界"符號:

x mod y = x - y l x / y j

上面公式的意思是:

x mod y等於 x 減去 y 乘上 x與y的商的下界.

以 -3 mod 2 舉例:

-3 mod 2

= -3 - 2xl -3/2 j

= -3 - 2xl-1.5j

= -3 - 2x(-2)

= -3 + 4 = 1

所以:(-2) mod 12 = 12-2=10

(-4) mod 12 = 12-4 = 8

(-5) mod 12 = 12 - 5 = 7

開始證明

再回到時鐘的問題上:

回撥2小時 = 前撥10小時

回撥4小時 = 前撥8小時

回撥5小時= 前撥7小時

注意, 這裡發現的規律!

結合上面學到的同餘的概念.實際上:

(-2) mod 12 = 10

10 mod 12 = 10

-2與10是同餘的.

(-4) mod 12 = 8

8 mod 12 = 8

-4與8是同餘的.

距離成功越來越近了. 要實現用正數替代負數, 只需要運用同餘數的兩個定理:

反身性:

a ≡ a (mod m)

這個定理是很顯而易見的.

線性運算定理:

如果a ≡ b (mod m),c ≡ d (mod m) 那麼:

(1)a ± c ≡ b ± d (mod m)

(2)a * c ≡ b * d (mod m)

如果想看這個定理的證明, 請看:

原碼 反碼 補碼詳解

在求解一些問題的時候,難免會涉及到補碼,特別是負數,它是以正數的補碼形式儲存在計算機中,有時候需要將補碼轉換成原碼,要是不理解其中的關係就很難下手。下面先講一下機器數和真值,首先要理解什麼是機器數,它是數字在計算機中的二進位制表示形式,而真值則是字面上理解的意思。舉個例子,當機器字長為8位時,3的機...

原碼,反碼,補碼,詳解

本篇文章講解了計算機的原碼,反碼和補碼.並且進行了深入探求了為何要使用反碼和補碼,以及更進一步的論證了為何可以用反碼,補碼的加法計算原碼的減法.論證部分如有不對的地方請各位牛人幫忙指正 希望本文對大家學習計算機基礎有所幫助 一.機器數和真值 在學習原碼,反碼和補碼之前,需要先了解機器數和真值的概念....

原碼,補碼,反碼詳解

首先來記住規則 原碼到補碼的計算是 原碼的符號位不變,其餘位按位取反後加1.原碼到反碼的計算是 原碼的符號位不變,其餘位按位去反 然後來看一下原碼 反碼和補碼的定義 原碼就是符號位加上真值的絕對值,即用第一位表示符號,其餘位表示值。比如如果是8位二進位制 1 原 0000 0001 1 原 1000...